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What happens in Vegas, stays in Vegas

A popular saying on the convexity of the set
of things that happen in Las Vegas

Objectives
Be able to answer the following:

1. Consider vectors x1, x2, · · · ∈ Rd. What is a convex combination of such vectors?

2. What is a convex set?

3. What is the epigraph of a function?

4. Prove the equivalency of the following definitions of a convex set (hint: Jensen’s inequality):

(a) A function f(x) is convex iff domf is convex and ∀x, y ∈ domf and t ∈ [0, 1]:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

(b) The epigraph of a function is a convex set.

5. Prove the following conditions for the convexity of a function:

(a) (First Order Condition) A differentiable function f(x) is convex iff domf is a convex set and
∀x, y ∈ domf :

f(y) ≥ f(x) +∇f(x)T (y − x)

(b) (Second Order Condition) A twice-differentiable function f(x) is convex iff domf is a convex set
and the Hessian is positive definite:

∇2f(x) � 0

6. Given the definition of the Lipschitz Condition (write it down):

(a) Find a function that does satisfy the Lipschitz Condition but is not continuous

(b) Find a λ-Lipschitz function that is continuous

7. Define strong convexity

8. Write down and plot:

• a function that is convex but not strongly convex

• a strongly convex function

9. Fenchel/convex conjugate transform of a function

(i) What is it? (Give a formal definition)

(ii) Give its geometric interpretation

1-1
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(iii) Why is having every convex conjugate of a function f is enough to define f itself?

(iv) Prove Fenchel’s inequality

10. Prove that the following sentences are equivalent:

(a) f is strongly convex with parameter µ

(b) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− µ
2α(1− α)‖y − x‖

2

(c) f(y) ≥ f(x) + sT (y − x) + µ
2 ‖y − x‖

2 ∀x, y and any sx ∈ ∂f(x)
(d) (sy − sx)T (y − x) ≥ µ‖y − x‖2 ∀x, y and any sx ∈ ∂f(x), sy ∈ ∂f(y)

11. What is the subgradient? Define it.

1.1 Introduction
Convex analysis is the field of mathematics occupied with the concept of convexity. It is inherently related
to the concept of mathematical optimization and its ideas and tools are omnipresent in fields like machine
learning, leading to a dramatic rise of interest in the field in recent years. Convexity is –intuitively speaking–
about the property of elements of a set being bound to end up in the same set after certain kinds of
"interactions" amongst them. The reader should probably have by now acquainted themselves with some
kind of convexity through-out their studies. Usually this incorporates thinking about convexity in terms of
convex functions and the property of things ending up in the initial set might seem somewhat confusing. We
are going to try and bridge the layman’s grasp of convexity as tangent lines of a curve remaining below it at
any point and the initial informal description about the property of sets whose elements will under certain
"operations" result in elements belonging to the initial set.

Notation
Notation will not stray from conventions most people hold when writing mathematics. The d-dimensional
Euclidean space will be signified by Rd; scalars will be denoted with symbols like x, y, α, β, etc while random
variables will favor capital letters like X and Y . Vectors (be them random or deterministic) will be written
in the usual bold font: x, y, α, β, etc and `p vector norms will be represented by ‖ · ‖p.

1.2 Preliminaries: Convex Sets
Let’s consider the set of R as well as the sets Rd where d ∈ N known. Vectors x ∈ Rd are d-tuples
(x1, x2, . . . , xd). We will now move on to discuss certain concepts in the broad concept of convexity limited
to such subsets of Rd and functions defined on them. Let’s start with the elementary definition of a convex
set. (We will use the words vector and point more or less interchangeably for the time being)

Definition 1 (Convex Set). A subset C of Rd is said to be convex when for every pair x,y ∈ C ⊆ Rd and
every λ ∈ R for which 0 ≤ λ ≤ 1 the following holds:

z = (1− λ)x+ λy ∈ C

Geometric Interpretation. A set C is called convex when for every pair of points x,y every point z on
the straight line segment defined by the pair lies within C.

Theorem 1. The intersection of convex sets is a convex set.

Proof. Proof is trivial, easily derived from the definition.

Great. We defined what a convex set is using two vectors. What’s in for us if we want more than two
vectors. Best we can do for the time being is a convex combination of vectors. It’s really nothing fancy:
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Definition 2 (Convex combination of vectors). Let there be n vectors x1,x2, . . . ,xn ∈ Rd and n non-
negative coefficients λi such that λ1 + λ2 + . . . λn = 1, any vector z for which the following holds is called a
convex combination of the former vectors:

λ1x1 + λ2x2 + . . .+ λnxn

Geometric Interpretation. The set of the convex combinations of n vectors xi is the convex hull of the
set of points defined by xi

Theorem 2. A set is convex iff it contains all the convex combinations of its elements.

1.3 Preliminaries: Geometric concepts in Rd

We will now move to define some extensions to certain concepts one finds quite familiar and useful in 2-D or
3-D space in order to not only establish a common ground with regards to vocabulary, but also help motivate
intuitive geometric thinking as it can prove to be quite valuable and fruitful in the context of convex analysis.

Definition 3. (Half-space) Given the space Rn, a vector a and a vector b with a, b ∈ Rn then the set that is
defined by the inequality:

〈a,x〉 ≤ b,x ∈ Rn

is called a (closed) half-space of Rn If the inequality holds strictly (i.e. 〈a,x〉 ≤ b) the set is called an open
half-space of Rn.

Definition 4. (Hyper-plane) Let vectors a, b ∈ Rn be constant and x ∈ Rn. The set of points that lie on
the set H defined by the equation:

〈a,x〉 = b

is called a hyper-plane.

Observe that a hyper-plane in Rn has dimension n − 1. The concept of the hyper-plane extends what
one naturally would call a line in R2 ( i.e. a sub-space of R2 with a basis of dimension 1) and a plane in
R3 (i.e. the sub-space of R3 that has a basis of dimension 2). One more observation is that the vector a is
perpendicular to the hyper-plane. Abusing the analogy we draw between liners R2 and hyper-planes in Rd,
we could also refer to a as the slope of the hyper-plane.

Definition 5. (Supporting half-space) Let C be a convex set C ∈ Rn. A supporting half-space is a half-space
that:

• contains C

• has a point of C on its boundary

It follows naturally that one would define a supporting hyper-plane in the following way:

Definition 6. (Supporting hyper-plane) The boundary of a supporting half-space of a convex set C is called
a supporting half-space.

1.4 Convex functions
Since we have already defined some fundamental ideas that will function as building blocks for more complex
concepts, we will move on to discuss the matters that will mainly concern us, namely convexity with respect
to a function.
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1.4.1 Definitions
Let f be a function mapping values from Rd to R. We can imagine f as defining a hyper-surface in the joint
space of its input space and its output space, Rd × R. The points above that surface whose perpendicular
projections on Rd remain in domf form the epigraph of the given function. More formally:

Definition 7. An epigraph of a fuction f : Rn → R is said to be the set of points (x, µ) such that µ ≥ f(x)
and it is noted as:

epif = {(x, µ) |µ ≥ f(x)}

In 1.1 the epigraphs of two different function can be seen.

f(x)

epif

domf

epig

g(x)

domg

Figure 1.1: Two different functions with their respective epigraphs (the fading red areas)

Definition 8 (Convex function). A function f : Rd → R is said to be convex when domf is convex and for
any x,y ∈ domf for any t ∈ [0, 1] the following inequality holds:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

When the latter inequality is strict we say that f is strictly convex.

This definition can extend to what we will call Jensen’s inequality, generalizing the inequality from the
convex combination of two points to a convex combination of n points something that can at times prove
quite useful.

Theorem 3 (Jensen’s inequality). Let f be a convex function, x1,x2, . . . ,xm ∈ domf and λ1, λ2, . . . , λm ∈
[0, 1] such that λ1 + λ2 + . . .+ λm = 1. Then, it always holds that:

f(λ1x1 + λ2x2 + . . .+ λmxm) ≤ λ1f(x1) + λ2f(x2) + . . .+ λmf(xm)

Another definition of a convex function is the one that uses a function’s epigraph.

Definition 9 (Convex function – alternative definition). A function is convex when epif is a convex set.

We can also demonstrate that the two latter definitions equivalent.
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Proof. (Definition 8 ⇒ Definition 9) Let
(
x1, v1

)
, . . . ,

(
xn, vn

)
∈ epif . Since the domain of f (domf)

is convex, we know that if we define any set of coefficients t1, . . . , tn ∈ [0, 1] such that
∑
i ti = 1, the point(

x′, v′
)
=
(∑

i tixi,
∑
i tivi

)
will also belong to domf . By definition of the epigraph, we know that:{

vi ≥ f(xi),∀i ∈ {1, . . . , n}
v′ ≥ f(x′)

⇒ (1.1)

v′ = t1v1 + . . .+ tnvn ≥ t1f(x1) + . . .+ tnf(xn) =
∑
i

tif(xi) (1.2)

By Jensen’s inequality – directly implied by definition 8 – the following will be true:∑
i

tif(xi) ≥ f
(∑

i

tixi
)
⇒ (1.3)∑

i

tif(xi) ≥ f(x′) (1.4)

Hence, from 1.2 and 1.4 we see that:

v′ ≥ f(x′) (1.5)

This means that every point
(
x′, v′

)
defined as the convex combination of points

(
xi, vi

)
∈ epif, i =

1, 2, . . . , n belongs in epif , rendering the latter a convex set.

(Definition 8 ⇐ Definition 9)
If epif is convex, then for every pair

(
x, u

)
and

(
y, v

)
, for all t ∈ [0, 1], the points

(
tx(1− t), tu+ (1− t)v

)
belong in epif as well. Since the line interpolated between

(
x, u

)
and

(
y, v

)
belongs to epif every value

f(tx+ (1− t)y) need be less or equal to tu+ (1− t)v by definition of the epigraph, that is:

f(tx+ (1− t)y) ≤ tu+ (1− t)v (1.6)

No constraint prevents us from assigning to u, v the values u = f(x) and v = f(y). Then, 1.6 becomes:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Since one proposition implies the other, we can decide that they are equivalent.

For the sake of completeness, we will need to give the definitions of some more concepts, namely that of
the effective domain, which we have already used without giving a proper definition and that of a proper
function.

Definition 10 (Effective Domain of a Convex Function). The effective domain of a convex function domf
is the set of x s.t:

domf = {x | f(x) < −∞}

Definition 11 (Proper function). A function f is called proper if its epigraph is non-empty and contains
no vertical lines.

Proposition 1. Let f be a convex function, f is proper iff there exists at least one point x such that
f(x) < +∞ and f(x) > −∞ anywhere else. Or equivalently, its effective domain domf is non-empty and f
takes at least one finite value.

One more theorem we are going to state about all convex functions, but not yet prove, is the following
one that can make us think of convex functions in an intriguing way.

Theorem 4. Every closed convex function f is the pointwise supremum of the colleciton of all affine functions
h such that h ≤ f .

Geometric Interpretation. The latter tells us that if we consider a function f : R→ R, the curve defined
by f can be described at any one of its points as the maximum value of all the lines h for which h ≤ f .
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1.4.2 First and Second Order Conditions
Of course, however easy it might be to grasp the definition, it could fall short in usefulness or practicality
with respect to trying to characterize a function as being convex or not. Luckily the next two theorems
–restricted on differentiable and twice differentiable functions– can offer a way that can prove quite helpful
in characterizing functions as convex or not.

Theorem 5 (First Order Condition). Let a function f : Rd → R be differentiable. Then, f is convex iff
domf is a convex set and for any x,y ∈ domf the next inequality holds:

f(y) ≥ f(x) +∇f(x)T (y − x)

Geometric Interpretation. What the latter means is quite simple to comprehend. Given two points
x, y ∈ domf , regardless of their relative poisition (i.e. it could very well be x < y or x > y), if we were
to start following the tangent line to the curve that passes trough

(
x, f(x)

)
with horizontal direction that

would lead to y, we will consistently find ourselves below f(y). We tried to illustrate this in figure 1.2.

We will now prove that under the prerequisite that the function f is differentiable, the the theorem is
equivalent to the definition of a convex functions:

(
x, f(x)

) (
y, f(y)

)
(
x,∇f(x)(x− y)

) (
y,∇f(y)(y − x)

)

Figure 1.2: Illustration of the first order condition

Proof. We will prove the equivalency with a clever trick; firstly we will prove the claim for functions R→ R
and the we will parametrize any function Rd → R in a way that will demonstrate the validity of our claim
for such functions f with domf ⊆ Rd.
( Definition 8 ⇒ Theorem 5)

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)⇒ (1.7)
f((1− t)x+ ty)− f(x) ≤ −tf(x) + tf(y)⇒ (1.8)

f((1− t)x+ ty)− f(x) ≤ t
(
f(y)− f(x)

) t>0
===⇒ (1.9)

f((1− t)x+ ty)− f(x)
t

≤ f(y)− f(x)⇒ (1.10)

f(x+ t(y − x))− f(x)
t

≤ f(y)− f(x)⇒ (1.11)

f(x+ t(y − x))− f(x)
t(y − x)

(y − x) ≤ f(y)− f(x) t→0
===⇒ (1.12)

f ′(x)(y − x) ≤ f(y)− f(x)⇔ (1.13)
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f ′(x)(y − x) + f(x) ≤ f(y) (1.14)

( Definition 8 ⇐ Theorem 5) For the needs of proving this claim we will consider three points,
x, y, z ∈ R such that z = tx+ (1− t)y which means that x ≤ z ≤ y. From the theorem in question we would
get: {

f(x) ≥ f(z) + f ′(z)(x− z)
f(y) ≥ f(z) + f ′(z)(y − z)

×t
=========⇒
×(1−t),0<t<1

(1.15){
tf(x) ≥ tf(z) + tf ′(z)(x− z)
(1− t)f(y) ≥ (1− t)f(z) + (1− t)f ′(z)(y − z)

(+)
==⇒ (1.16)

tf(x) + (1− t)f(y) ≥ f(z) + tf ′(z)(x− z) + (1− t)f(z) + (1− t)f ′(z)(y − z)⇒ (1.17)
≥ f(z) + tf ′(z)x− tf ′(z)z + f ′(z)y − f ′(z)z − tf ′(z)y + f ′(z)z ⇒ (1.18)
≥ f(z) + tf ′(z)x+ f ′(z)y − f ′(z)z − f ′(z)y ⇒ (1.19)

≥ f(z) + f ′(z)
(
tx+ (1− t)y

)︸ ︷︷ ︸
z

−f ′(z)z ⇒ (1.20)

≥ f(z) + f ′(z)z − f ′(z)z ⇒ (1.21)
≥ f(tx+ (1− t)y) (1.22)

And now we will simply consider a function f : Rd → R, two points x,y ∈ domf and a function g : R→ R
such that g(t) = f(tx+ (1− t)y). We derive g with respect to t:

g′(t) = ∇f(tx+ (1− t)y)T d
dt

(tx+ (1− t)y)⇒ (1.23)

= ∇f(tx+ (1− t)y)T (x− y) (this remains a scalar) (1.24)

If we consider f to be convex we can see that this renders g convex as well. Consider two points σ1 =
τ1x+ (1− τ1)y and σ2 = τ2x+ (1− τ2)y with τ1, τ2 ∈ [0, 1]. Thanks to f ’s convexity:

f(λσ1 + (1− λ)σ2) ≤ λf(σ1) + (1− λ)f(σ2)⇔ (1.25)
g(λτ1 + (1− λ)τ2) ≤ λg(τ1) + (1− λ)g(τ2) (1.26)

Convrsely, if g is convex then for τ1, τ2 ∈ [0, 1]:

g(λτ1 + (1− λ)τ2) ≤ λg(τ1) + (1− λ)g(τ2) (1.27)

If we choose τ1 = 0 and τ2 = 1:

g(λ) ≤ λg(0) + (1− λ)g(1)⇔ (1.28)
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.29)

We successfully showed that for differentiable functions with a domain that is a subset of R, theorem 5
is equivalent to definition 8 and by means of the simple device of function g we were able to generalize the
equivalency claim to function with a domain in Rd.

Theorem 6 (Second Order Condtion). Let a function f be twice differentiable and domf convex. Function
f is convex iff for every x ∈ domf :

∇2f(x) � 0

(i.e. the Hessian matrix1of f is positive semi-definite or zT∇2f(x)z ≥ 0,∀z)

1Reminder: ∇2 =



∂2

∂x21

∂2

∂x1 ∂x2
· · ·

∂2

∂x1 ∂xn

∂2

∂x2 ∂x1

∂2

∂x22
· · ·

∂2

∂x2 ∂xn

...
...

. . .
...

∂2

∂xn ∂x1

∂2

∂xn ∂x2
· · ·

∂2

∂x2n
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Proof. The rationale for proving the second order condition is similar to proving the first order condition.
First, we prove that the equivalence stands for functions with a single dimensional domain and then extend
the claim to prove it to domains with more than one dimensions.

For a function f with domf , theorem 6 translates to f ′′(x) ≥ 0. It should be well established that this
means f ′(x) is non-decreasing.

Let points x, y, z ∈ domf with x ≤ z ≤ y and z = tx+ (1− t)y for some t ∈ [0, 1]. Then we can conclude
that since f ′(x) is non-decreasing:

f ′(x) ≤ f ′(z) ≤ f ′(y)

It is obvious that f is an antiderivative of f ′, hence:{∫ z
x
f ′(t)dt = f(z)− f(x)∫ y

z
f ′(t)dt = f(y)− f(x)

(1.30)

By utilizing the Mean Value Theorem for integrals from calculus, we can decide that there exist points ξ1, ξ2
for which x ≤ ξ1 ≤ z ≤ ξ2 ≤ y such that:{∫ z

x
f ′(t)dt = f(ξ1)(z − x)∫ y

z
f ′(t)dt = f(ξ2)(y − z)

z≥ξ1
===⇒
z≤ξ2

(1.31){∫ z
x
f ′(t)dt ≤ f ′(z)(z − x)∫ y

z
f ′(t)dt ≥ f ′(z)(y − z)

⇒ (1.32){
f(z)− f(x) ≤ f ′(z)(z − x)
f(y)− f(z) ≥ f ′(z)(y − z)

z=tx+(1−t)y
=========⇒ (1.33){

f(z)− f(x) ≤ f ′(z)
(
tx+ (1− t)y − x

)
f(y)− f(z) ≥ f ′(z)

(
y − tx− (1− t)y

) ⇒ (1.34){
f(z)− f(x) ≤ f ′(z)(1− t)(y − x)
f(y)− f(z) ≥ f ′(z)t(y − x)

×t
=====⇒
×(1−t)

(1.35){
tf(z)− tf(x) ≤ tf ′(z)(1− t)(y − x)
(1− t)f(y)− (1− t)f(z) ≥ (1− t)f ′(z)t(y − x)

⇒ (1.36){
tf(z)− tf(x) ≤ tf ′(z)(1− t)(y − x)
(1− t)f(z)− (1− t)f(y) ≤ (1− t)f ′(z)t(x− y)

(+)
==⇒ (1.37)

f(z)− tf(x)− (1− t)f(y) ≤ 0⇒ (1.38)

f(z) ≤ tf(x) + (1− t)f(y) z=tx+(1−t)y
=========⇒ (1.39)

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (convex by definition) (1.40)

As for the converse, we shall show that by reductio ad absurdum the second derivative of a convex func-
tion cannot receive negative values. We it to receive a negative value, then by it being continuous (it is
differentiable), there should by an interval [q, r] ⊆ domf such that inequalities would take the opposite
direction: {∫ z

x
f ′(t)dt > f ′(z)(z − x)∫ y

z
f ′(t)dt < f ′(z)(y − z)

(1.41)

This would inevitably lead to the following inequality if we were to follow the same steps as we just previously
did:

f(tx+ (1− t)y) > tf(x) + (1− t)f(y)
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But, we considered f to be convex, hence if f is convex there cannot be any interval of its domain where its
second derivatives should receive negative values.

As for the case of the multidimensional domain. We consider g such that g(t) = f(tx+ (1− t)y). As we
showed while proving theorem 5, g is convex iff f is convex. We also proved that g is convex iff g′′(t) ≥ 0.
If we try to derive g twice we would get the following:

g′′(t) =
d2

dt2
g(t)⇒ (1.42)

=
d2

dt2
f(tx+ (1− t)y)⇒ (1.43)

=
d

dt

(
∇f(tx+ (1− t)y)T (x− y)

)
⇒ (1.44)

= (x− y)T∇2f(tx+ (1− t)y)(x− y) (1.45)

We can observe that if z = tx + (1 − t)y by choosing an appropriate t, the vector (x − x) could be any
vector in Rd. Hence, for g to be convex, the Hessian of f needs to be positive semi-definite.

1.5 Conjugate Transform & Fenchel’s inequality
In this section we are going to discuss the conjugate transform of functions. It is a transform that maps the
parameters of hyper-planes tangent to the curve of a function to a certain value. It may not be the first time
one sees such a transform, one that shifts our attention to a parameter space. For example, in traditional
computer vision a certain transform, known as Hough Transform, is used in order to map whole lines of the
2-D space to tuples (ρ, θ); θ being the angle that the line perpendicular to the line in question forms with the
horizontal axis and ρ being the distance of the line from the origin. Although this only vaguely resembles
the subject of our discussion – and we regret causing any confusion – we mention it in order to motivate
more ways of thinking of lines than just as a set of points. There are various implementations based on this
premise that help us detect and recognize not only lines but also regular geometric shapes.

θ

ρ

Figure 1.3: Representing the blue line with parameters ρ, θ
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Figure 1.4: An implementation of the Hough Transform

Our subject revolves around tangent lines (or hyper-planes for function domains with dimension greater
than 1) on a convex function. We will demonstrate a way that has been devised in order to represent
elegantly the whole set of these tangent lines.

Definition 12 (Convex conjugate). Let a function f be convex. We define its conjugate transform as the
function f∗ such that:

f∗(p) = sup
x∈domf

{〈p,x〉 − f(x)}

Frankly the definition seems a bit awkward. Considering its geometric interpretation could maybe shed
some light as to what this is supposed to mean.

Geometric Interpretation. The conjugate transform of a function f is merely a function f∗ that maps
slopes α to the maximum available offset β such that the given line αx + β will be tangent to the curve
defined by f .

f(x)

f∗(tanθ1)

f∗(tanθ2)

θ1
θ2 x

Figure 1.5: Geometric meaning of the conjugate transform

The conjugate transform f∗ of a function, f if certain conditions hold for the latter, can give us all
the information we need about f . Keeping in mind the theorem about f being described as the point-wise
supremum of all affine functions h such that h ≤ f , it seems rather intuitive. We will state this formally:
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Theorem 7 (Fenchel-Moreau Theorem). Let f be lower semi-continuous2 and convex, then:

f∗∗ = f

1.6 Subgradients, subdifferentials

1.6.1 Definition
This section is concerned with function that are not everywhere differentiable. Although we cannot define
a gradient at a given point, it may be sufficient to substitute an exact gradient with slope-vectors that will
always undeshoot the value of function in question for any given pair of points.

However informal is the initial description of the subgradient might have been, the formal definition does
not fall far:

Definition 13. (Subgradient) Let a function f be convex. Any vector p is called a subgradient of f at a
point x ∈ domf if for any z ∈ domf :

f(z) ≥ f(x) + 〈p, z − x〉

Definition 14. (Subdifferential) The set of every subgradient vector of a convex function f at point x is
called the subdifferential, ∂f(x), of f at point x.

In figure 1.6 we tried to illustrate a number of subgradients for the function f that is not everywhere
differentiable.

x0

f(x) ∂f(x0)

Figure 1.6: The subdifferential ∂f(x0) is the set of all subgradients which are represented by the red lines.
A subgradient at point x0 will always undershoot the value of f at any point z.

Since we have seen a quite intuitive definition of the subdifferential, why not use our intuition as a
stepping stone in order to grasp a more technical definition of it? Before we move on to define subgradients
alternatively, we will need to remind ourselves the notion of directional derivatives.

2Reminder: A function is lower semi-continuous at x0 if for every ε > 0 there exists a neighborhood U of x0 such that
f(x) ≥ f(x0)− ε ∀x ∈ U if f(x0) < +∞. Else if f(x0)→ +∞ then f(x)→ +∞ as well.
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Definition 15 (Directional Derivative). The directional derivative f ′(·, ·) of a function f at point x in
direction d is defined as:

f ′(x,d) = lim
t↓0

f(x+ td)− f(x)
t

(Obviously, t > 0)

We can now define the subdifferential with respect to the directional derivative.

Definition 16 (Subdifferential–Alternative Definition). The subdifferential ∂f of f at point x is the set
defined as such:

∂f(x) = {s
∣∣ 〈s,d〉 ≤ f ′(x,d), ∀d ∈ Rd}

Vectors s are the subgradients of f at point x.

1.6.2 Fenchel’s inequality
Since we have now seen both the conjugate transform and the definition of the subgradient, we can move on
to state Fenchel’s inequality:

Theorem 8 (Fenchel’s inequality). For any subgradient vector p ∈ f∗(domf∗) and any x ∈ domf the
following inequality stands:

f∗(p) + f(x) ≥ 〈p,x〉

Proof. By the definition of the conjugate transform: f∗(p) = supx∈domf {〈p,x〉 − f(x)} we can decide that:

f∗(p) ≥ 〈p,x〉 − f(x),∀x⇔ (1.46)
f∗(p) + f(x) ≥ 〈p,x〉 (1.47)

1.6.3 Mean Value Theorems
Subgradients seem to magically lift restrictions placed upon the validity of known theorems when functions
are non-differentiable. An instance of this is the reinstatement of the mean value theorem for functions that
are convex but not everyhwere differentiable.

Theorem 9 (Differential form). Let a function f : Rd → R be convex. For any x,y ∈ domf , there will
always exist a t ∈ (0, 1) for which z = tx+ (1− t)y and s ∈ ∂f(z) such that:

f(y)− f(x) = 〈z,y − x〉

Theorem 10 (Integral form). Let a function f : Rd → R be convex. For any x,y ∈ domf with z =
tx + (1 − t)y and any collection of subgradients on points z(t), ∀t ∈ [0, 1] (i.e. for every point between x
and y):

f(y)− f(x) =
∫ 1

t=0

〈∂f(z(t)),y − x〉 dt

1.6.4 Extending convexity theorems to non-differentiable functions
We can now extend some previously stated theorems for the convexity of differentiable functions to functions
that are not everywhere differentiable.

Lemma 1. The following are equivalent:

(a) f is convex

(b) (First Order Condition Analogue) f(y) ≥ f(x) + sTx (y − x) (1.48)
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(c) (Monotonicity of Subgradients) (sy − sx)T (y − x) ≥ 0, ∀x,y and any sx ∈ ∂f(x), sy ∈ ∂f(y) (1.49)

Proof. The path from (a) to (b) is rather simple. We write down the definition of convexity and through
the directional derivative reach to the subgradient:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)⇒ (1.50)
f(y + t(x− y)) ≤ tf(x) + (1− t)f(y)⇒ (1.51)
f(y + t(x− y))− f(y) ≤ tf(x)− tf(y)⇒ (1.52)
f(y + t(x− y))− f(y)

t
≤ f(x)− f(y) t↓0

==⇒ (1.53)

f ′(y,x− y) ≤ f(x)− f(y) by definition
========⇒ (1.54)

〈sy,y − x〉 ≤ f ′(y,x− y) ≤ f(x)− f(y) (1.55)

As for the path from (b) to (a), we need two pairs of points x, z and z,y – with z = tx+ (1− t)y – to
apply (b) on: {

f(x) ≥ f(z) + sTz (x− z)
f(y) ≥ f(z) + sTz (y − z)

z=tx+(1−t)y
=========⇒ (1.56){

f(x) ≥ f(z) + (1− t)sTz (x− y)
f(y) ≥ f(z) + tsTz (y − x)

×t
=====⇒
×(1−t)

(1.57){
tf(x) ≥ tf(z) + t(1− t)sTz (x− y)
(1− t)f(y) ≥ (1− t)f(z) + (1− t)tsTz (y − x)

(+)
==⇒ (1.58)

t(x) + (1− t)f(y) ≥ f(z)⇒ (1.59)
t(x) + (1− t)f(y) ≥ f(tX + (1− t)y) (1.60)

Hence, (a)⇔(b).
With regards to (c), we can observe that applying (b) for both swaps of x,y and by adding by parts we

get: {
f(y) ≥ f(x) + sTx (y − x)
f(x) ≥ f(y) + sTy (x− y)

(+)
==⇒ (1.61)

f(y) + f(x) ≥ f(x) + f(y) + sTxy − x+ sTy (x− y)⇒ (1.62)

(sy − sx)T (y − x) ≥ 0 (1.63)

As for reaching (b) from (c), we have to revert to the integral form of the mean value theorem for subgradients
after stating (c) for y and an intermediate point z = tx+ (1− t)y:

(sz − sy)T (z − x) ≥ 0⇒ (1.64)

(sz − sy)T
(
tx+ (1− t)y − x) ≥⇒ (1.65)

t(sz − sy)T (x− y) ≥ 0⇒ (1.66)

(sz − sy)T (x− y) ≥ 0⇒ (1.67)

sTz (x− y) ≥ sTy (x− y) (1.68)

Which means, the regular derivative of g(t) is the directional derivative of f(tx+ (1− t)y) on the direction
x − y, since we will have to restrict it to right side assuming t > 0. Now, from the mean value theorem of
differential calculus we get:

g(1)− g(0) = f(x)− f(y) =
∫ 1

0

(
f ′(tx+ (1− t)y,x− y)

)
dt (1.69)
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We now know that since inequality 1.68 holds3:

f(x)− f(y) =
∫ 1

0

(
f ′(tx+ (1− t)y,x− y)

)
dt (1.70)

=

∫ 1

0

(
f ′(z,x− y)

)
dt⇒ (1.71)

≥
∫ 1

0

(
sTz (y − x)

)
dt

1.68
===⇒ (1.72)

≥
∫ 1

0

(
sTx (y − x)

)
dt⇒ (1.73)

=
(
sTx (y − x)

) ∫ 1

0

dt⇒ (1.74)

= sTx (y − x)⇒ (1.75)

f(x)− f(y) ≥ sTx (y − x) (1.76)

1.7 Strong Convexity
As we can observe, if a function is convex it means that we can bound every value of the function if it lies
between two other given values of that function. There is one more – quite stronger – bound we can define
for certain functions. The latter functions are the ones that we are going to call strongly convex. In strongly
convex functions, values of the function intermediate to any pair of points x,y ∈ domf can be bound with
combination of the previously stated bound and an appropriate parabola (more or less what we would call
a bowl).

Since there is not much consensus in the most popular texts on the matter and although some authors
choose to speak of strong convexity in the context of twice differentiable, we chose to give a more liberal
definition of strong convexity –following Hiriart-Urruty and Lemaréchal (2001)– that is not immediately
concerned with differentiability.

Definition 17. (Strong Convexity) A function f : Rm → R is said to be a strongly convex function with
coefficient (more precisely, modulus) m if the latter inequality holds:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖22

is convex.

Lemma 2. A function f is strongly convex if f(x)− m
2 ‖x‖

2 is convex.

Remark 1. If f : Rd → R is twice differentiable, then f is strongly convex iff the next sentence holds for
some m > 0:

∇2f � mI
Proof. We need to observe that the latter implies:

∇2f(x)−mI � 0⇔ (1.77)

∇2
(
f(x)− m

2
xTx

)
� 0 (1.78)

This means that the function g(x) = f(x)− m
2 x

Tx 4 needs to be convex. As we very well know, by means
of the second order condition the claim of equivalency must hold since if we write down the inequality stated
by definition 8 we will derive the mentioned inequality:

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(x)⇒ (1.79)
3Reminder:

f(x) ≥ g(x)⇒
∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx

4Reminder: xTx = 〈x,x〉 = ‖x‖22
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tf(x1) + (1− t)f(x2)− m
2 t(1− t)(x2 − x1)

2

f(x)(
x1, f(x1)

)

(
x2, f(x2)

)tf(x1) + (1− t)f(x2)

Figure 1.7: A strongly convex function is not only bounded by the straight black line but the red line as well

f(tx+ (1− t)y)−m(tx+ (1− t)y)T (tx+ (1− t)y) ≤ t
(
f(x)−mxTx

)
+ (1− t)

(
f(y)−myTy

)
⇒
(1.80)

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)(y − x)T (y − x)⇔ (1.81)

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖y − x‖22 (1.82)

Lemma 3. The following sentences are equivalent to f being strongly convex with modulus m (or m-
strongly-convex ):

(a) f(y) ≥ f(x) + sT (y − x) + m

2
‖y − x‖22 (1.83)

(b) (sy − sx)T (y − x) ≥ m‖y − x‖22 (1.84)

Proof. In order to get from (a) to definition 17 we apply it on two pairs of points, x, z and z,y, where
z = tx + (1 − t)y), accordingly. We will then multiply both instances with (t − 1) and t accordingly and
sum by parts to get the desired inequality:{

f(y) ≥ f(z) + sTz (y − z) + m
2 ‖y − z‖

2

f(x) ≥ f(z) + sTz (x− z) + m
2 ‖x− z‖

2
⇒ (1.85){

f(y) ≥ f(z) + sTz
(
y − (tx+ (1− t)y)

)
+ m

2 ‖y − (tx+ (1− t)y)‖2

f(x) ≥ f(z) + sTz
(
x− (tx+ (1− t)y)

)
+ m

2 ‖x− (tx+ (1− t)y)‖2
⇒ (1.86)
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f(x) = 2x

Figure 1.8: Function f(x) = 2x is not strongly convex as f ′′(x) can be arbitrarily close to 0 for x < 0

{
f(y) ≥ f(z) + tsTz (y − x) + t2m2 ‖y − x‖

2

f(x) ≥ f(z) + (1− t)sTz (x− y) + (1− t)2m2 ‖x− y‖
2

×(t−1)
=====⇒
×t

(1.87)(t− 1)f(y) ≥ (t− 1)
(
f(z) + tsTz (x− y) + t2m2 ‖x− z‖

2
)

tf(x) ≥ t
(
f(z) + (1− t)sTz (y − x) + (1− t)2m2 ‖y − z‖

2
) (+)

==⇒ (1.88)

tf(x) + (1− t)f(y) ≥ f(z) + m

2
t(t− 1)‖y − x‖2 (1.89)

Conversely, can use the definition 17 to get to (a) by using the alternative definition of the subdifferential
that encompasses the directional derivative:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖22

z=tx+(1−t)y
=========⇒ (1.90)

f(z) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖2 ⇒ (1.91)

f(z) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖2 ⇒ (1.92)

f(z)− f(y) ≤ tf(x)− tf(y)− m

2
t(1− t)‖x− y‖2 ⇒ (1.93)

f(z)− f(y)
t

≤ f(x)− f(y)− m

2
(1− t)‖x− y‖2 ⇒ (1.94)

f(z)− f(y)
t

+
m

2
(1− t)‖x− y‖2 ≤ f(x)− f(y)⇒ (1.95)

f(y + t(x− y))− f(y)
t

+
m

2
(1− t)‖x− y‖2 ≤ f(x)− f(y) t↓0

==⇒ (1.96)

f ′(y,x− y) + m

2
‖x− y‖2 ≤ f(x)− f(y) def.16

====⇒ (1.97)

〈sy,x− y〉+
m

2
‖x− y‖2 ≤ f ′(y,x− y) + m

2
‖x− y‖2 ≤ f(x)− f(y) (1.98)

The latter is just the definition of strong convexity with x,y swapped.
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Now, we can move from (a) to (b) as such:{
f(y) ≥ f(x) + sTx (y − x) + m

2 ‖y − x‖
2

f(x) ≥ f(y) + sTy (x− y) + m
2 ‖x− y‖

2

(+)
==⇒ (1.99)

f(y) + f(x) ≥ f(y) + sTy (x− y) +
m

2
‖x− y‖2sTx (y − x) + f(x) +

m

2
‖y − x‖2 ⇒ (1.100)

0 ≥ sTy (x− y) + sTx (y − x) +m‖y − x‖2 ⇒ (1.101)

−sTy (x− y)− sTx (y − x) ≥ m‖y − x‖2 ⇒ (1.102)

sTy (y − x)− sTx (y − x) ≥ m‖y − x‖2 ⇒ (1.103)

(sTy − sTx )(y − x) ≥ m‖y − x‖2 ⇒ (1.104)

(sy − sx)T (y − x) ≥ m‖y − x‖2 (1.105)

And now we can close the circle of arguments, using (b) to return to (a). We start from (b) for points y and
z = tx+ (1− t)y and we get:

〈sz − sy, z − y〉 ≥ m‖z − y‖2 ⇒ (1.106)

〈sz − sy,
(
tx+ (1− t)y − y

)
〉 ≥ m‖y −

(
tx+ (1− t)y − y

)
‖2 ⇒ (1.107)

〈sz − sy, t(x− y)〉 ≥ m‖t(x− y)‖2 ⇒ (1.108)

t〈sz − sy,x− y〉 ≥ mt2‖(x− y)‖2 ⇒ (1.109)

〈sz − sy,x− y〉 ≥ mt‖(x− y)‖2 ⇒ (1.110)

〈sz,x− y〉 ≥ 〈sy,x− y〉+mt‖(x− y)‖2 (1.111)

We revert to the function g(t) = f(tx + (1 − t)y) which is convex as we have seen. We apply the integral
form of the mean value theorem for subgradients to get the following relation which we will combine (b)
with 1.111 :

g(1)− g(0) = f(x)− f(y) =
∫ 1

0

〈sz,x− y〉 dt
1.111
===⇒ (1.112)

≥
∫ 1

0

(
〈sy,x− y〉+mt‖(y − x)‖2

)
dt⇒ (1.113)

=

∫ 1

0

(
〈sx,x− y〉

)
dt+

∫ 1

0

t dtm‖(x− y)‖2 ⇒ (1.114)

= 〈sx,x− y〉+
1

2
m‖(x− y)‖2 ⇒ (1.115)

f(x)− f(y) ≥ 〈sy,x− y〉+
m

2
‖(x− y)‖2 (1.116)

1.8 Lipschitz Condition
One way to implicitly speak of functions whose (sub-)gradients are bounded is to use the definition of them
being λ-Lipschitz or not, specifically when the slope of every one of its tangents is bounded by λ. Such a
function is said to satisfy the Lipschitz Condition.

Definition 18. (Lipschitz Condition) Let a function f : Rm → Rn. The function is said to be λ-Lipschitz
or to satisfy a Lipschitz Condition if there exists a constant λ ∈ R, λ > 0 such that for any x,y ∈ Rm:

‖f(y)− f(x)‖ ≤ λ‖y − x‖

We complement the definition with two examples of one function that satisfies the Lipschitz Condition
and is not everywhere continuous and one that is continuous everywhere and does satifisfy the Lipschitz
Condition.
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f(x) = 0.7x, x 6= 0.5

Figure 1.9: The straight line that has one point of incontinuity satisfies the Lipschitz Condition

f(x) = λ sinx λx
+
c

−
λx−

c

Figure 1.10: The function λ sinx has tangents that at any given point, never get into the red area defined
by the two red lines for different c’s.
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