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Objectives
• Define Sperner’s Lemma for the multi-dimensional case

• Prove the Brouwer Fixed Point Theorem (consider Sperner’s lemma given)

• Prove the 1st Theorem from Nash (1951)

1.1 Preliminaries
In order to start talking about equilibrium points in games we need to familiarize ourselves with a couple
of tools. In order to prove the existence of an equilibrium point in a finite N -person game we will need the
Brouwer Fixed Point Theorem which in turn needs Sperner’s Lemma.

We will use an analogy from a common practice in building wire-frames in order to get into graph theory
gently. For this purpose a graph’s edge will be represented by a stick and a joint made out of playdough will
stand in the place of a graph’s vertex.

1.1.1 On Sticks, Colored Playdough, and Triangles (Sperner’s Lemma)
1.1.1.1 One dimension and Two dimensions

We are given n buckets of playdough – each bucket’s content is colored uniquely – and as many identical
sticks as we like. Using playdough to construct joints we connect sticks together. The joints are what we
refer to as nodes or vertices in graph theory and the sticks are called edges. The color of the playdough will
remain called as such.

Let us imagine a simple recipe for constructing however large structures starting from a single dimension
structure. Consider a line consisting by a series of edges connected consecutively by edges. We pick 2
different colors to label with the rightmost and the leftmost vertices respectively. Now, we can color the rest
of the vertices using the same 2 colors.

Lemma 1 (Sperner’s lemma in a single dimension). Given a set of vertices and edges that alternate forming
a straight line with one vertex on each end of the line and two distinct colors; if the two ends are colored
differently and the intermediate vertices can be colored only by the same two colors used for the two ends,
then the number of color changes between the vertices of line will be an odd number.

Of course, the latter are trivial. We shall now state the rule for building greater structures as promised.

Top-Down Approach Form a large triangle consisting of 3 big sticks and 3 distinctly colored pieces of
playdough. We will now break every edge to as many pieces we may in order to be able to create more
connections within the initial triangle. But there are some rules to that; every time you break one of the
exterior edges you have to stick them back together using playdough of the same color found on its ends.
Also, every time you break one of the exterior sticks you have to make sure that no other polygon than a
triangle is formed, you will have to break any other edge you find necessary while respecting the rule that
every node of each side of the exterior triangle is colored with either one of the colors found on the two
respective ends.

The top-down approach may – honestly – seem a bit cluttered, so let’s try a bottom-up one.
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Bottom-Up Approach Consider new bucket of playdough. The playdough is colored gray and we
will consider it as colorless and a placeholder for replacing it later with some that is colored. We on-
struct a simple triangle with 3 sticks and gray playdough. We start building up from the initial sim-
ple triangle by making sure the outer shape remains a triangle by either adding two new sticks and
a new joint. Whenever we may and if – as required – the outer edges still form a triangle you we
stop the building phase and start the coloring phase. For the coloring phase we pick a unique color
for every on of the vertices of the outermost triangle. We color every joint of the outside triangle –
color as in replace the gray plaster with a colored one – with strictly either one of the colors found
on one of the two ends. The interior vertices need to be colored as well, but we can do so randomly.

We remind the reader that such a wire-frame made of playdough and sticks is a graph G(V,E), whose
vertices V are the joints made of playdough and its E are the sticks we used. The color of the playdough is
a label we assign to every vertex v ∈ V . The colors can be equivalently thought of as an integer.

Definition 1. A triangle is called distinguished if its vertices are colored by all 3 colors.

Lemma 2 (Sperner’s lemma on a planar graph). Every properly colored triangular subdivision (or triangu-
lation) of a triangle has an odd number of 3-colored triangles.

1.1.1.2 More than two dimensions

In order move on two more than two dimensions one should seek for a generalizations of the notion of a
triangle. The generalization in question is a simplex. In the 0-dimensional case a simplex reduces to a point,
in the 1-dimensional case a simplex reduces to a line, in the 2-dimensional case a simplex is a triangle, in
the 3-dimensional case a simplex is a tetrahedron (a pyramid whose every side is a triangle) and lastly a
4-dimensional space is called a 5-cell (as it consists of 5 tetrahedra). Some authors symbolize m-dimensional
simplices (or m-simplices) with ∆m.

Definition 2 (m-simplex). Consider an m-dimensional space and vectors v0,v1, . . . ,vm drawn from the
former space. If the vectors v1 − v0,v2 − v0, . . . ,vm − v0 are linearly independent, the convex hull of these
vectors (namely, the intersection of all convex sets that contain the points v0, . . . ,vm) is said to be an
m-simplex, ∆m.

It may have become apparent that we can speak of the vectors v0,v1, . . . ,vm as the vertices of the simplex
as well.

Definition 3. A simplex P is called a probability simplex or a standard simplex if

P = {x = θ0v0 + . . .+ θmvm : θi ≥ 0,

m∑
i=0

θi = 1}

.

That means that all points of P lie in the convex set defined by the origin 0 and m unit vectors of Rm.

Definition 4 (k-face). A k-face of an m-simplex, is merely a k-simplex defined by a subset of the m + 1
vertices of the initial m-simplex such that k ≤ m.

We name P the m-simplex defined by v0,v1, . . . ,vm.

Sperner coloring on an m-simplex Let S be a set of vertices and edges lying inside an m-simplex
including vertices and the edges of the m-simplex itself. The points of S define smaller m-simplices that
divide the larger simplex into disjoint spaces. S is also called a triangulation of P . Keeping in mind that
colors are refered to uniquley as color 0, 1, 2, . . . ,m, a valid Sperner coloring is a coloring of every vertex for
which the following hold:

• Every one of the m+ 1 vertices that define the m-simplex get a unique color 1 through m+ 1. (With no
loss of generality and for the sake of clarity, the vertex vi gets the i-th color.)
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• Vertices of S that lie on a k-simplex defined by a subset of {v0, . . . , vm} can only receive colors whose
numbers coincide with the indices of the k+ 1 vertices that define the k-simplex in question. (e.g. vertices
lying on a 4-simplex defined by {v0, v2, v4, v5} can only be colored with colors {0, 2, 4, 5})

Lemma 3 (Sperner’s lemma on an m-simplex). Given an m-simplex P , a division S of P that retains a
valid Sperner coloring with m+ 1 colors, there exists an odd number of m-simplices inside P that carry all
m+ 1 colors.

1.1.2 Brouwer Fixed Point Theorem
Theorem 1 (Brouwer Fixed Point Theorem). Let a set K ⊆ Rd be convex, closed and bounded. A function
T : K → K that is continuous has at least one x ∈ K such that T (x) = x.

We prove the Brouwer theorem on K = ∆m by means of the Sperner Lemma. We show that there is a
relation between entries of Q ∈ K and T (Q) that can be considered as a valid Sperner coloring. We will talk
of k-faces of ∆m as being constituted by k vectors vr vectors or the indices of these vectors interchangeably.

Proof. We consider the case that K = ∆m. Since every Q = (q1, . . . , qm) ∈ K and
T (Q) = (T1(Q), . . . , Tm(Q))∈ K we know that:∑

i

qi =
∑
i

Ti(Q) = 1

By means of the pigeon hole principle we can conclude that there exists at least one index j such that
qj ≥ Tj(Q).

If Q happens to lie on a k-face of the larger ∆m simplex, we know that there are several non-zero qi ≥ 0
with i ∈ I, where I signifies the indices of the vectors vr that constitute the k-face in question. Apparently,
for the rest qi s.t. i /∈ I, qi = 0.

Combining the two latter propositions, since the entries qi that refer to the vertices perpendicular to the
current k-face are zero, we can pick a j s.t. qj ≥ Tj(Q) from only the set of indices that constitute the
current k-face.

Picking an index from those that correspond to the set of vectors that construct a k-face is directly
equivalent to picking a color that is compatible to a Sperner coloring – remember that a vertex’s color can
only come from the set of colors of the vertices that constitute the k-face in question.

We firstly use this rule on the vertices of ∆m as to assign a number 0 through m+ 1 to each color.
Picking arbitrarily many points Qi we can create an arbitrarily small triangulation S of P that has a

valid Sperner coloring. Thanks to the Sperner lemma for the multi-dimensional case, we know that there is
an odd number of cells (smaller m-simplices) of ∆m such that every vertex is uniquely colored. But, having
a cell being uniquely colored means that for every vertex Q(r), r ∈ {0, 1, . . .m}:

q
(r)
i ≥ Ti(Q

(r))

If all Q(r) can come infinitesimally close to each other depending on the number of initial points in S,
we can conclude that there will be such a point Q∗ = (q∗1 , . . . , q

∗
m), infinitesimally close to the points Q(r) of

the distinguished simplex that since
∑
i q
∗
i = 1 =

∑
i Ti(Q

∗) and qi ≥ Ti(Q
∗) it must inevitably hold that

Q∗ = T (Q∗)
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•
Q = (θ0, θ1, θ2) = θ0v0 + θ1v1 + θ2v2
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Q = (θ0v0, θ1v1, 0) = θ0v0 + θ1v1
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•

Q = (θ0, 0, θ2) = θ0v0 + θ2v2

A

B

C
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•

Q = (0, θ1, θ2) = θ1v1 + θ2v2

Figure 1.1: The 3-faces of ∆3 with their corresponding coordinates

1.2 Nash Equilibrium
Rock-Paper-Scissors Rock-paper-scissors is a game played between two players that lasts only one round.
Each player has a selection of 3 moves (namely rock, paper and scissors). Each player picks their move and
simultaneously reveal their choice. A player can win or lose and there can be only one winner.

In terms conventional to game theory:

• this is a 2-person game

• each one of the 3 moves is a (pure) strategy and can be thought of as three perpendicular unit vectors,
e1, e2, e3. (More precisely strategy is the player’s all-or-nothing bet that the corresponding move will win)

• The rule by which we decide which of the played moves wins can either be formulated as a matrix and
in that case the matrix would be called a payoff matrix, or it could be thought of as a function, in which
case it would be called a payoff function

• the fact that only one player can be a winner for every instance of the game makes the game a zero-sum
game. Think about winning as having payoff 1 and losing as −1, in that case the sum of every player’s
payoffs equals to 0

A more general case The latter may not always hold, in the sense that:

• a game may have more than two players. Such a game is obviously called a n-player game

• a player need not go all-in on each move but can rather place partial bets on several ones. Such a betting
is called a mixed strategy.

• There can be
(
n
2

)
payoff matrices, one for every player that will relate a player’s bet to their payoff with

regards to every other player’s bets

• it may not always be true that the sum of the payoffs is equal to zero. Such games are called general-sum
games
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Just to be clear, a lowercase Latin letter (e.g. i, j, k) signifies one out of n players and a lower-
case Greek letter signifies one of m moves. Each player’s strategy can be represented by a vector xi =
(xiα, xiβ , . . . , xiκ, . . .) ∈ ∆m−1 ⊂ Rd whose every entry i holds the player’s betting on the i-th move. It may
be obvious that we consider that

∑
λ xiλ = 1, xiλ ≥ 0. More formally:

Definition 5 (Finite Game). 1 A finite n-person game is:

• a general-sum game

• consisting of n players

• each player i is associated with an m-dimensional strategy vector xi ∈ ∆m. A mixed strategy vector is
a vector whose entries sum to one. Pure strategies (i.e. xi = eiκ for some κ ∈ {1, . . . ,m}) are special
cases of mixed strategies.

• each player i is associated with a payoff function pi : ∆m × · · · ×∆m︸ ︷︷ ︸
n

→ [0, 1]. Payoff, the scalar value

of a payoff function, could be referred to as utility as well.

We will also define some auxiliary observations and notations; the κ-th pure strategy of the i-th player will
be denoted by eiκ and a mixed strategy xi = (x1, . . . , xm) can equivalently be written as

∑
κ xiκeiκ. Also, s

will be the tuple of all mixed strategies (x1, . . . ,xm) and a swapping of i-th player’s strategy vector xi with
a new one ti will conveniently be noted as (s; ti). Successive substitutions ((s; ti); rj) will be indicated as
(s; ti; rj). A pure strategy κ is said to be used by player i when the coefficient xiκ > 0. We also define piκ
as replacing player i’s mixed strategy with the pure strategy eiκ.

Definition 6 (Equilibrium Point). A tuple of mixed strategies s = (x1, . . . ,xn) is said to be an equilibrium
point if for every i:

pi(s) = max
∀ri∈∆m

pi(s; ri)

In plain English, the latter means that an equilibrium point is an n-tuple of mixed strategies such that
no player can unilaterally (i.e. by themselves) increase their payoff if the strategies of all other players are
held fixed.

Theorem 2 (Existence of Equilibrium Points). Every finite general-sum game has an equilibrium point.

Proof. The proof we selected relies on the Brouwer Fixed Point Theorem. We will define a function
T : s→ s′, that maps a strategy s to a new one s′.

First off, we observe that pi is linear with respect to every strategy vector xi and n-linear with respect
to all n of them. Consequently:

max
∀ri∈∆m

pi(s; ri) = max
κ

pi(s; eiκ)

Then we let a function φiκ be a continuous function used as an indicator of how much would a player’s
payoff would improve if they were to play a pure strategy κ instead (deteriorating is as good as no change
at all):

φiκ = max{0, piκ(s)− pi (s)}

With the help of the φi functions we move on to define a function T (s) = s′ that will perform an one-step
payoff increase for every player’s strategy (if no increase is possible, payoff stays the same). The function in
question can be seen as a two step process; namely it performs a step in every dimension from xiκ towards
the pure strategy that improves the payoff for the given player and then a scaling of every dimension in order
to keep the sum of all the coefficients

∑
κ xiκ = 1. So for every strategy x, function T outputs a new one x′

s.t.:

x′i =

step︷ ︸︸ ︷
(xi +

∑
φiκeiκ) ·

scaling︷ ︸︸ ︷
1

1 +
∑
κ φiκ

1In a more general case, not all players need to have the same number of moves but this will not concern us at the moment
and we will not lose any of the generality from the conclusions we are going to draw.
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If s′ = s stays the same under T it means that no player can shift to a strategy that will make their
payoff better which makes s an equilibrium point. Conversely, if s is an equilibrium point we need to observe
that all φ·(·) turn to zero which makes x′i = (xi + 0) 1

1 = xi
Since T is continuous, bounded and closed on S = ∆m × · · · ×∆m︸ ︷︷ ︸

n

and S is convex, thanks to the

Brouwer Fixed Point Theorem, we can decide that there exists an equilibrium point, or T (x) = x for every
finite game.
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