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1.1 Introduction
Here we will discuss the kind of games that take place in multiple steps while also the available moves of
each player are subject to change and depend on the state the game occupies at each time-step. Specifically,
we will be concerned with somewhat of an extension to 2-person zero-sum games. In a 2-person, zero-sum
game each player is given m and n available moves accordingly, they make their choices in secret and then
simultaneously reveal their moves; what player 1 wins, player 2 will lose and both player have knowledge of
how each pair of two opposing moves affects the utility, the payoff matrix is known to both players. Hereafter,
we will be referring to conventional single round N -person games as matrix games.

Since the original paper was published in 1953, it does not adhere to Markov Decision Processes standard
notations but we will try to bridge the gap between the notation of contemporary literature and the original
work.

1.1.1 Formal Setting
Let us now define our setting a bit more concretely. The stochastic game we are concerned with is played
between 2 players. They still play their moves in the fashion of a conventional 2-person matrix game, i.e.
they will simultaneously reveal their choice of move while they hold knowledge of the corresponding payoff
matrix of the state they are in.

Definition 1 (Stochastic Game). A stochastic game Γ consists of:

• 2 opposing players

• N + 1 states (to which we will refer to with an integer k or l ∈ {1, . . . , N}). N of them stand for states
of an ongoing game (non-terminal states) and 1 of them stands for the end of the game (terminal state).
The former are all potentially connected to one another while the game-over state is a total sink (i.e. we
can access it from every state, but we can access no other state once we are there and we declare the game
finished).

• a collection payoff matrices Ak. This means the number of payoff different payoff matrices is N and each
one of them has a dimension mk × nk for a state k.

• a collection of transition matrices P kl. Since every state is possibly accessible from any other, every state
k has corresponding 1 matrix for the terminal state and N matrices for every other state. This is sums to
N2 +N such matrices in total.

If we define Γk as the game starting at state k, then the game Γ is the collection Γ = {Γk|k = 1, 2, . . .}.
Which means a game Γ is the set of games that start at any non-terminal state.

Let’s elaborate a bit on the matter on notation; the matrix P kl holds entries pklij which denote the
probability of transition from state k to state l when the players draw the moves i and j accordingly.
Respectively, skij denotes the probability the game finishes when the two players draw the latter moves.
We also note that skij is set to be skij > 0, meaning there is always a chance the game will be over at the
corresponding next state at any given state, with any given tuple of actions i, j. It may have become apparent
that: ∑

l∈1,...,N

pklij + skij = 1
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In 1.1 we try to illustrate the latter relations since for someone familiar with Markov Processes the notation
can feel a bit awkward.

As far as payoffs are concerned, at every state k, player 1 will be winning akij over player 2 if they play
moves i and j accordingly.
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Figure 1.1: A set of transition matrices for state k. The values of the red squares sum to 1.

We move on to make some auxiliary conventions on notation and some useful observations; value s stands
for the minimum probability of moving to the terminal state that is related to any possible tuple of actions
i, j and state k:

s = min
i,j,k

skij

In the same spirit, we define M as the maximum absolute value of any possible payoff; that is, for any tuple
of actions i, j on state any state k:

M = max
i,j,k

∣∣akij∣∣
We could now observe that the expected total gain/loss is bounded by:

M + (1− s)M + (1− s)2M + . . . =
M

s

or
E[total gain/loss] ≤ M

s

And conclusively, the following, more or less obvious, inequalities will hold:

pklij ≥ 0∣∣akij∣∣ ≤M
pklij = 1− skij ≤ 1− s < 1
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We could say that time is implied to be discrete but still the full sets of pure or mixed strategies for each
player will enormous and rather redundant. We restrict our concerns on stationary strategies, namely a rule
of betting that will take into account solely a player’s position at the current moment. The latter translates
to playing the same strategy every time one reaches a certain state regardless of the route followed to get
there. The set of these strategies is represented by tuples x and y each holding N vector entries of mixed
strategies one for every non-terminal state:

x = (x1,x2, . . . ,xN )

and
y = (y1,y2, . . . ,yN )

. Every one of the latter vectors has a length dependent on the given state:

xk = (xk1 , . . . , x
k
mk)

and
yk = (yk1 , . . . , y

k
nk)

1.2 Existence of a Solution
As we seek to prove the existence of a solution to any such game, we will have to make some prelim-
inary observations. We will have to momentarily revert to simple, matrix games to introduce mapping
val[·]=̇ miny maxx{·} and observe that for any two matrices of the same shape B and C:

|val[B]− val[C]| ≤ max
i,j
|bij − cij | (1.1)

While for the purposes of proving the existence of a solution for stochastic games, we are introducing the
matrices Ak(δt). Each Ak(δt) holds entries:

akij +
∑
l

pklij δ
l
t

We observe matrix Ak(δt) to be a sum of the plain matrix A and a matrix holding a weighted sum of the
entries of δt the coefficients of which depend on the actions chosen the running state and the state each entry
of δt corresponds to. Vector δt is dependent on time and will hold N numerical entries. After initializing δ0
to whichever vector we may, we can recursively induce the value of δt as:

δkt = val[Ak(δt−1)]

It is notable that if every entry δk0 is initialized to valAk, then δkt will be the value of the game that
starts at state k and, if it lasts, it is cut off after t time steps.

We can now state the first theorem on the value of a stochastic game Γ: The value of the stochastic
game Γ is the unique solution δ∗ of the system:

δk
∗

= val[Ak(δ∗)]

For the needs of the proof in question, we need to prove that for t → ∞, δt is independent of the initial
vector δ0 and the components of the resulting vector are the values of the infinite game Γk.

Proof. Existence of δ∗: For the needs of this proof we will be using the l∞ and will be shortly referring to
simply by ‖ · ‖. (i.e. ‖a‖ = max |ak| )

Let T be a transform T : RN → RN defined as T (δ) = ξ = (ξ1, . . . , ξk, . . . , ξN )T where ξk = val[Ak(δ)].
In order to prove that there does exist a fixed point under T we write the following:

‖Tξ − Tδ‖=̇ max
k

∣∣valAk(ξ)− valAk(δ)
∣∣
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1.1
≤ max

∣∣∣∣∣(akij +
∑
l

pklξl)− (akij +
∑
l

pklδl)

∣∣∣∣∣
= max

∣∣∣∣∣∑
l

pklξl −
∑
l

pklδl

∣∣∣∣∣ = max

∣∣∣∣∣∑
l

pkl(ξl − δl)

∣∣∣∣∣
≤ max

∣∣∣∣∣∑
l

pkl

∣∣∣∣∣max
l

∣∣ξl − δl∣∣
= (1−min

i,j,k
skij)‖ξ − δ‖

= (1− s)‖ξ − δ‖ ⇒

‖Tξ − Tδ‖ ≤ (1− s)‖ξ − δ‖ (1.2)

Since, Tξ = T (Tδ) = T 2δ and as just shown ‖Tξ − Tδ‖ = ‖T (Tδ − δ)‖ ≤ (1− s)‖Tδ − δ‖, s > 0 we can
conclude that the sequence T nδ converges and as n→∞, T nδ converges to a fixed point δ∗.

Uniqueness of δ∗: Furthermore, we will demonstrate that the latter is unique. Let φ,ψ be two fixed
points, meaning φ = Tφ,ψ = Tψ. Then for the norm of their difference we show that:

‖ψ − φ‖ = ‖Tψ − Tφ‖
1.2
≤ (1− s)‖φ−ψ‖

This inevitably leads to ‖φ− ψ‖ = 0 and φ = ψ, since something non-negative is equal to itself multiplied
by something other than 1.

We have now seen that there does exist a fixed point under T and that it also is unique and independent
of an initial point δ0.
δ∗’s entries hold the values of Γk: In order to show that entry δk? holds the value of a game that

starts at state k, namely Γk, we note the following; let λkt be the value of the game Γk if an optimal strategy
is followed for the t initial steps. If the player were to play ad infinitum following random choices, the
expected value of the game λk∞ would be:

λkt − (1− s)tM − (1− s)t+1M − . . . ≤λk∞ ≤ λkt + (1− s)tM + (1− s)t+1M + . . .⇒

λkt − (1− s)t(M
∞∑
i=0

(1− s)i) ≤λk∞ ≤ λkt + (1− s)t(M
∞∑
i=0

(1− s)i)⇒

λkt − (1− s)tM
s
≤λk∞ ≤ λkt + (1− s)tM

s
⇒

−(1− s)tM
s
≤λk∞ − λkt ≤ (1− s)tM

s

We define et = (1− s)t Ms and observe that while t→∞, et → 0. Hence, δ∗ indeed holds the values of every
game Γk.

Next, we will be concerned with whether a set optimal stationary strategies exists or not. And such a set
does exist, but in order to prove so we will slightly modify the rules of the game. Instead of playing a game
of indefinite time steps, the game will be agreed to stop at step t, and at this last step, both players will
receive a surplus to the payoff dictated by the payoff matrix corresponding to the their current state. The
surplus for the state h, given the pair of actions i, j will be

∑
l p

hl
ij . Let’s now state the promised theorem

before going on with its proof. The stationary strategies x∗,y∗ (whose l-th vector-elements xl,yl belong
to the sets of optimal mixed strategies of the matrix game Al(δ∗) for every state l = 1, . . . , N and for player
1 and player 2 accordingly) are optimal for each player respectively in every game Γk ∈ Γ

Proof. As we started discussing, we have changed the rules a bit. The game will end at step t when the
players are occupying state h of the game and the actions of their choice are i, j. They will receive (or lose)
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at the final step:
ahij +

∑
l

phlij δ
h∗

While at every previous step at state q, the were receiving/losing the familiar:

aqij

This ensures that by following such an optimal stationary strategy, at the end of the game that started on
state k every player gets (or loses) δk∗.

Returning to the initial setting, after step t, player 1 will have won the amount δkt :

δkt ≥ δk
∗ − (1− s)t−1 max

i,j,h

∑
l

phli jδ
k∗

≥ δk∗ − (1− s)t−1 max
i,j,h

∑
l

phli jmax
l
δl
∗

≥ δk∗ − (1− s)t−1 max
i,j,h

∑
l

phli jmax
l
δl
∗

≥ δk∗ − (1− s)t−1(1− s) max
l
δl
∗

≥ δk∗ − (1− s)t max
l
δl
∗

So for, δk∞ we can conclude the following inequality:

δk∞ ≥ δk
∗ − (1− s)t max

l
δl
∗ − (1− s)tM

s

Then, letting t go to infinity, and since δk∞ is also bounded from above, playing on stationary strategies from
the set of optimal solutions to every instantaneous matrix game, does provide an optimal strategy for the
overall stochastic game.
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